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Abstract. The six-jump-cycle (6JC) mechanism is used to derive expressions for collective 
correlation factors in a nonstoichiometric binary intermetallic compound AB. The 6JC is used as 
a fundamental unit for the cycle involving a perfectly ordered configuration and a two-jump-
cycle (2JC) as a fundamental unit for the cycle involving existing antistructural atoms.  The 
jump frequency for the 6JC is calculated in terms of a four-frequency-model using the mean 
first passage concept of Arita et al., while the jump frequency for the 2JC is taken to be the 
harmonic mean of the individual jump frequencies. The expressions for phenomenological 
transport coefficients are obtained through the linear response approximation using the kinetic 
equation approach. The results for collective correlation factors are compared with Monte Carlo 
simulation and are found to be in reasonably good agreement when the ratio of jump 
frequencies of regular site and antistructural atoms is of the order of 10-1. 
 
Introduction 
 
 Intermetallics having the B2 structure such as M1-xAlx (M=Fe, Co, Ni) have a number of 
attractive properties that motivate their extensive use in industry. The advantages over other 
materials include higher specific strength as well as improved temperature and oxidation resistance 
[1]. Despite the simplicity of the intermetallic B2 structures [2], diffusion in these technologically 
promising alloys, which is generally believed to be diffusion via vacancies, is an intriguing subject 
since nearest-neighbour sites in these structures are jumps to antistructural sites, hence temporarily 
disturbing the local order, see, for example, the reviews [3,4]. A number of Monte Carlo 
simulations of general vacancy models such as the four-frequency model [5,6] and the Ising alloy 
model [7,8] have shown that the six-jump cycle (6JC) mechanism predominates in highly ordered 
structures existing at low temperatures and for compositions approaching stoichiometry. 
 The collective correlation factors fij  [9] appear in combination in the expressions for 
vacancy-wind factors [10,11] occurring in the diffusion coefficients describing collective diffusion 
processes, for example, the inter-diffusion or chemical diffusion coefficient ( )D~  and the intrinsic 
diffusion coefficients ( )I

B
I
A D,D . Murch and Belova [7,11,12] have derived expressions for the 
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vacancy-wind factors rA, rB and S giving their relationship to collective and tracer correlation 
factors for B1/ B2 ordered alloys.  
 Using the path probability method [14], Wang and Akbar [13], have calculated the Onsager 
phenomenological coefficients Lij [15] in the Ising alloy model for B1 and B2 structures. Qin and 
Allnatt [16] have used a matrix method for the calculation of the collective correlation factors via 
the collective cosines. Belova and Murch [6] have extended the Manning [17,18] formalism, well 
known for its description in random alloys, to intermetallic compounds and have given expressions 
[8] for diagonal and off-diagonal collective correlation factors, in the limit of perfect order, for B2 
intermetallic compounds. Recently, Murch and Belova [8,20] have calculated phenomenological 
coefficients and collective correlation factors using, as an example, the Ising alloy model for non-
stoichiometric B2 intermetallic compounds. They considered the antistructural atom as an 
‘impurity’ and, making use of the 6JC as a fundamental diffusion unit, employed an analogue of the 
five-frequency model for impurity diffusion via vacancy jumps [21]. The results were in excellent 
agreement with Monte Carlo simulations. 

In this paper, we have used a two-sublattice model of an ordered alloy where the correlation 
factors are partitioned into sublattice correlation factors (e.g., fAA into fA1A1 and fA2A2 etc). We have 
calculated the collective correlation factors for nonstoichiometric B2 intermetallic compound using 
the six-jump-cycle (6JC) as a fundamental unit for the cycle involving atoms on regular sites and a 
two-jump-cycle (2JC) as a fundamental unit for the cycle involving an antistructural atom at one of 
the 110- type or 100-type sites. Correlation effects arising from the interference of the antistructural 
atoms are not taken into account. We have used a kinetic equation approach to describe the random 
diffusion of 6JC or 2JC as units by taking into account atoms on regular sites as well as 
antistructural atoms at 110- and 100-type sites. 

 
Jump Frequencies for 6JC and 2JC 
 
Considering the two-sublattice model of a B2 ordered alloy [6,22], we take sublattice-1 as the 
‘home’ sublattice of atoms of kind B and sublattice-2 as the ‘home’ sublattice of atoms of kind A 
We consider the four-frequency model where the jump frequency of atom B from sublattice-1 to 
sublattice-2 with the exchange with a vacancy is represented by 21

B1B WW →≡ . Similarly, we define 
12

AA2
21

AA1
12

BB2 WW,WW,WW →→→ ≡≡≡ . The site fractions CA1, CA2, CB1 and CB2 can be obtained 
easily in terms of the composition of A or B atoms and the jump frequencies [6,24]. For a fully 
ordered configuration, the average jump frequency of a single isolated 6JC can be calculated 
following the method of Arita et al. [23] and using the four-frequency model [6] as: 
 

)α4α48α364α1360α2325α2232α1152(288
)α4α6(3α

765432

23

2AB1 +++++++
++

=≡νν                        (1) 

 
Here, A2B1 WndW a  are the jump frequencies of atoms form the ‘right’ to ‘wrong’ sublattice, 
whereas B2A1 WndW a  are the jump frequencies of atoms form the ‘wrong’ to ‘right’ sublattice. The 
ratio of the two is denoted as:  
 

A1

A2

B2

B1

W
W

W
W

α ==                         (2) 

 
When an antistructural atom itself is at a 110-type or 100-type site relative to the vacancy 

then, after the first two jumps of vacancy, the resulting configuration has the same energy as the 
initial one and the net displacement of the antistructural atom is non-zero. By its very nature, the 
frequency of this 2JC is much greater than that of the 6JC. The jump frequency for the [110]-2JC or 
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the [100]-2JC cycle involving two similar atoms can be taken to be the harmonic mean of the 
individual jump frequencies, say WA1 and WA2 of the two A atoms [22]. Thus we have that: 

 

)α(1
α2

B2A1 +
=≡νν                           (3) 

 
 

Phenomenological coefficients 
 
Uncorrelated Phenomenological Coefficients. When collective diffusion is investigated by the 
6JC or 2JC mechanism, diffusion on the two sublattices is independent of each other since a 
vacancy on a particular sublattice has no means of switching over to the other sublattice. Therefore, 
we shall calculate phenomenological coefficients for the sublattice-1 only.  
 In the 6JC mechanism, we have [110]-, [100]-straight and [100]-bent cycles for perfectly 
ordered configuration of B2 intermetallic compounds [23,25]. We consider that the jump 
frequencies for the regular site atom B1 for all the three kinds of cycles are equal and are given by 

B1ν . In the linear-response approximation [15], the uncorrelated part of the phenomenological 
coefficient (considering all three types of 6JC) is then given by: 
 

  ( ) B1B1V1
2
00

2
11

B

(0)
B1B1 νCCS2ZSZ

T6k
NL +=   

            B1B1V1
B

2

νCC
Tk

6Na
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=                             (4a)   

   
The factor 2 in the second term is due to two types of [100] cycles- straight and bent. Here Z1 is the 
coordination number for [110]-sites and Z0 is the coordination number for [100]-sites; CV1, CB1 

denote site-fractions of vacancy and atoms of the B kind; a2S1 =  and aS0 =  are the collective 
displacements on the completion of the [110]- and [100]-cycles; a is the cell length; N is the number 
of sites per unit volume; and kB and T have their usual meanings. 

For an antistructural A atom, two A atoms undergo nearest-neighbour displacements and the 
collective displacement of A atoms is again S1 or S0 when it is at 110-type or at 100-type sites 
respectively. Also, the 2JC frequency of the antistructured atom is the same whether it is at 110-
type site or at 100-type site. Further, the 100-type displacement of the antistructural A atom can 
take place in two ways as compared to the 110-type displacement. Thus, the uncorrelated part of the 
phenomenological coefficient (0)

A1A1L  can be written as: 
 

  A1A1V1
B

2
(0)
A1A1 νCC

Tk
6NaL ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=                                            (4b) 

Furthermore,  
                       0LL )0(

B1A1
)0(

A1B1 ==                                    (4c) 
 
  
Correlated Phenomenological Coefficients. For the random diffusion of a vacancy through the 
6JC or 2JC on sublattice-1, the regular site and antistructural atoms can be treated on the same 
footing except that they are displaced (through S1 or S0) with effective jump frequencies B1ν  and 

A1ν  respectively. It may be noted that whilst calculating the jump frequency of a single isolated 
6JC, using the mean first passage concept of Arita et al. [23], the 110-type sites and 100-type sites 
are coupled together and the average 6JC frequency for the regular site atom (or 2JC for the 
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antistructural atom) is the same when it is at either of the two sites. This means that starting from a 
given initial configuration after time t the atom can be either at 110-type sites or at 100-type sites 
with respect to the vacancy. Thus, taking into account all the initial and final configurations, the 
correlated part of the phenomenological coefficients (1)

i1j1L  can be expressed as: 
 

⎥
⎥
⎦

⎤
++

+
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                                               (5) 
where we have defined, for example: 

∑∫ =−−=
∞

λ

0)t;t(ψdt)(φ 0V1A1:V1A1
0

0
0

001
0

1 S,λ:λ;Sλ,λ:SS                             (6) 

 
Here 0)t;t(ψ 0

0:V1A1V1A1 =−− S,λ:λ;Sλ,λ 001  is the conditional probability of finding at time t the 
vacancy at site λ  and A atom at its 110-type site ( )1Sλ −  when initially the vacancy was at any site 

0λ  and A atom at 100-type site ( 0
0 Sλ 0− ) on the same sublattice-1. In deriving Eq. 5, we have used 

the fact that at low vacancy compositions the nearest neighbour sites of a vacancy can either be 
occupied by an A atom or by a B atom. Then all probability functions containing B atoms can be 
changed to the probability functions containing A atoms only, resulting in Eq. 5.  

Chaturvedi and Allnatt [26,27] and Sharma et al. [28,29] have shown that instead of solving 
the correlated part in real space it is much more convenient to work in Fourier space. For this 
purpose, we define the Fourier transform as: 

 

   ):(φe):(φ~ 0.i0 SrSk
r

rk∑=                   (7)  

and express Eq. 5 as:  

[ ])U()U(2)(U2)(U4νν
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where we have used symmetry of the integrals and fixed a particular value of the initial vectors 0

1S  
and 0

0S , say )ŷx̂(aS0
1

+=  and x̂aS0
0
= . The U-functions are defined as, for example:  

 )(φ~asinkd
2π
a8i)U( 0

0x
3

3
0
0 Sk:k:S ∫⎟⎠

⎞
⎜
⎝
⎛=                                                             (9a) 

)(φ~acoskasinkd
2π
a8i)(U 0

1yx
3

3
0
1 k:Sk:S ∫⎟⎠

⎞
⎜
⎝
⎛=′                             (9b) 

 
Kinetic Equation  

In order to know the probability functions ψ  or ϕ , we use the kinetic equation approach. 
The function ( )rλλ,AV −11ψ  represents the conditional probability of finding at time t the vacancy 
at site λ  and the atom A at site ( )rλ −  on the same sublattice when the system was in a given 
initial state. The site ( )rλ −  includes 110-type and 100-type sites (as only these sites are involved 
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in the 6JC or 2JC). Then considering the 6JC or 2JC as fundamental units for diffusion, the rate 
equation for the probability function ( )rλλ,AV −11ψ  can be written as:  

 
( ) ( ) ( ){ } ( ) ( )[ ]

( ) ( ){ } ( ) ( )[ ]'ψψθ2θ

ψψ2θθν
dt

dψ

111111
rr'

011

V1A1V1A101A1
V1A1

rλr,λλ,r,λr',λλrr

rλ,λr,λλrrrλλ,

pAVpAVp
p

−−−−−′+′+

−−−+=
−

∑∑
≠

ν
  

                                                                      (10) 
 
Here p = A, B. θ1(r) is the step function which is unity when r = S1 and zero otherwise. Similarly, 
θ0(r) is the step function which is unity when r = S0 and zero otherwise. In the above, for 
convenience, we have omitted the initial conditions since they are the same for all the probability 
functions.                
 The kinetic equation (Eq. 10) can be put into closed form by a suitable approximation to the 
three-site probability functions. In the lowest order of approximation [30,31], we neglect the terms 
that are in second order in fluctuations in the occupancy variables for the atoms. Then add and 
subtract terms with rr =′ , integrate with respect to t and sum over λ , we finally obtain:  
 

  

( ) ( ) [ ]
( ) [ ]

( ) [ ])r()rr(rθν

)r()r(rθ)ν(νC

)r()ν-ν()r(νrθ0t:rλ,λψ
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B1A1A1

V111
λ

1A1V

ϕ−′−ϕ′+

′ϕ−′−ϕ′−+

ϕ−−ϕ==−−

∑

∑

∑

′

′

                           (11) 

 
In the above, we have used the short notation: 
 
( ) ( ) ( ){ }rrr 01 θ2θθ +=                                    (12a) 

 
and have defined the vacancy escape frequency as: 
 

B1B1A1A1V1 νCνCν +=                                                                  (12b) 
 
and 
 

A1B1B1A11 νCνC +=ν                                       (12c) 
  
Now, multiply both sides of Eq. 11 by eik.r and summing over r, we get:  
    

( )

{ } ])k(~)kk(θ~)ν(-)kk(θ~kd
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Here  
 ( ) ( )rk k.r

r
θeθ~ i∑=                                            (14a) 

and 
01 ZZZ +=                                          (14b) 
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In order to solve for U  and U′ , defined through Eqs. 9a and 9b, we first multiply Eq. 13 by 
(8i sin kxa), and then integrate over k. With the use of symmetry of integrals this finally yield linear 
equations in U and U′ for two initial configurations as: 

 
              B1A1V1

0
01

0
01 CC-JC)(Ua)U(a =′′+ :S:S                               (15a) 

               B1A1V1
0
11

0
11 CCCJ-)(Ua)U(a ′=′′+ :S:S                                          (15b) 

 
Here  

            Jνν
2
J-1a 1V11 +⎟
⎠
⎞

⎜
⎝
⎛=                                           (16a) 

           J)ν2(νa 1V11 ′−−=′                                                        (16b) 
 
The values of J  and J′  can be calculated from the following integral:  
 

)(e
)](θ~-Z[
aksin3d

3

π2
a x

2

k
k

k∫⎟
⎠
⎞

⎜
⎝
⎛                                              (17) 

 
if we replace e(k) by 1 and akcos y  respectively. The values comes out to be J=0.2416 and 
J′=0.0259. 

Similarly, we multiply Eq. 13 by a)coskasink(8i yx  and integrate over k. This further yields 
two linear equations for U  and U′ as: 

 
              B1A1V1

0
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0
01 CCCJ-)(Ub)U(b ′=′′+ :S:S                              (18a) 

               B1A1V1
0
11

0
11 CCCJ-)(Ub)U(b ′′=′′+ :S:S                                         (18b) 

Here 

J)ν2(ν
2
1-b 1V11 ′−=                                    (19a) 

( ) J2ννJ1b 1V11 ′′+′′−=′                                                  (19b)  
        

The value of J ′′ can be calculated from Eq. 17 if we replace e(k) by akcos y
2 . This results 

J ′′ =0.1253. From Eqs. 15 and 18 U  and U′ can be calculated for a given initial state. The resulting 
expressions when substituted in Eq. 8 yields: 
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The collective correlation factors for sublattice-1 are given by: 
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The expressions for B1B1f and )j(
B1A1f  can be obtained by interchanging A and B in Eqs. 21a and 21b. 

We see that )j(
A1B1f = )j(

B1A1f  satisfy the Onsager reciprocity theorem. 
The collective correlation factors for sublattice-2 can be obtained by changing the subscript 

1 with 2 in Eqs. 21a and 21b. The collective correlation factors for the intermetallic alloy are 
obtained by taking the harmonic mean of the partial correlation factors for the two sublattices, i.e., 
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f
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The superscript j is omitted when i = j. 
 
 

              
 
Figure 1. Collective correlation factors (B)

AB
(A)
ABBBAA, f,f,ff  as a function of A- atom composition CA 

for 0.1α = : (⎯⎯) Calculated values, ( * * * ) Simulation results,  (-----) Sandhu et al. [24]. 
 

Results and Discussion 
 
       In this paper, collective correlation factors in a nonstoichiometric B2 intermetallic compound 
have been derived through a kinetic equation approach and the 6JC and 2JC mechanisms for 
diffusion. At small deviations from stoichiometry, each antistructural atom is assumed to be isolated 
i.e. the correlation effects arising from the interference of the antistructural atoms are not taken into 
account.  Using the 6JC for a perfectly ordered configuration and the 2JC for the cycle involving an 
antistructural atom at 110-type or 100-type sites relative to the vacancy, expressions for the partial 
phenomenological coefficients and collective correlation factors were derived for a given sublattice. 
The collective correlation factors are then obtained by taking the harmonic mean of the partial 
correlation factors for the two sublattices. 
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Figure 2. Collective correlation factors (B)

AB
(A)
ABBBAA, f,f,ff  as a function of A-atom composition CA 

for 0.08α = : (⎯⎯) Calculated values,  (* * * ) Simulation results,  (-----) Sandhu et al. [24]. 

               
Figure 3. Collective correlation factors (B)

AB
(A)
ABBBAA, f,f,ff  as a function of A-atom composition CA 

for 0.06α = : (⎯⎯) Calculated values,  (* * * ) Simulation results,  (-----) Sandhu et al. [24]. 
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Figure 4. Collective correlation factors (B)

AB
(A)
ABBBAA, f,f,ff  as a function of A-atom composition CA 

for 0.04α = : (⎯⎯) Calculated values,  * * * ) Simulation results,  (-----) Sandhu et al. [24]. 
 
The results for collective correlation factors are shown in Figs. 1-4 as a function of 

equilibrium composition of A atoms CA at fixed values of the jump frequencies ratio α . These are 
compared with the results of Monte Carlo simulation and a previous calculation [24] based on 
random nearest-neighbour jumps of a vacancy on two sublattices. As compared to Sandhu et al. the 
present results show less variation with CA and are in rather better agreement with the simulation 
data. The Monte Carlo simulations at and near stoichiometry were carried out by taking 

αWWand1WW B1A2B2A1 ====  for the values of 04.0,06.0,08.0,1.0=α . We can see that 
for 04.0=α  (Fig. 4) in the nearest neighbour jump model, as CA decreases fAA tends towards 
negative and fBB becomes larger whereas the present results show qualitative agreement with the 
simulation data. The cross correlation factors (B)

AB
(A)
AB fandf  are much smaller and are of the order of 

10-2. The results of Sandhu et al. [24] are in much better agreement with the simulation up to 
08.0=α . However, at 04.0=α , our results are in close agreement with the simulation data but this 

could be fortuitous. 
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Figure Captions. 

 

Figure 1. Collective correlation factors (B)
AB

(A)
ABBBAA, f,f,ff  as a function of A- atom composition CA 

for 0.1α = : (⎯⎯) Calculated values, ( * * * ) Simulation results,  (-----) Sandhu et al. [24]. 
 

Figure 2. Collective correlation factors (B)
AB

(A)
ABBBAA, f,f,ff  as a function of A-atom composition CA 

for 0.08α = : (⎯⎯) Calculated values,  * * * ) Simulation results,  (-----) Sandhu et al. [24]. 
 

Figure 3. Collective correlation factors (B)
AB

(A)
ABBBAA, f,f,ff  as a function of A-atom composition CA 

for 0.06α = : (⎯⎯) Calculated values,  * * * ) Simulation results,  (-----) Sandhu et al. [24]. 
 

Figure 4. Collective correlation factors (B)
AB

(A)
ABBBAA, f,f,ff  as a function of A-atom composition CA 

for 0.04α = : (⎯⎯) Calculated values,  * * * ) Simulation results,  (-----) Sandhu et al. [24]. 
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